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1. Overview

Since the beginning of this contract, we have continued our work on algorithms for recover-
ing motion and structure from image sequences, especially in their application to autonomous
navigation. The robustness of motion algorithms developed at the University [ADI85] [SAW90b]
[DUTY0] has been evaluated experimentally in comparison with Horn’s standard relative orien-
tation algorithm [HOR90], using real images [SAW90c]. In addition, the robustness of stereo and
motion algorithms has been analyzed theoretically [DUT91] [DUT90]. Work has also continued

on camera calibration, which is essential for accurate motion and structure recovery.

New motion algorithms were developed, extending previous work through the use of sim-
ulated annealing [DUT90], through the combination of stereo with motion [BAL91], through
integrating spatial and temporal constraints [SAW90a] [SAW90b], and through the use of a

Kalman filter incorporating the effects of motion error [THO91] [OLI91b] [THO90]. In all cases,

these algorithms were applied to real image sequences.

Robust algorithms for pose refinement, the determination of the camera position and orien-
tation by model-matching in a known 3D environment, have been ‘developed for use in our au-
tonomous navigation project [KUM90b] [KUM90d]. The effects on pose refinement of uncertain
knowledge of the camera parameters have been studied experimentally as well as theoretically
[KUMS90a] [KUMO90c]. Also, techniques for learning a partially unmodelled environment using

pose refinement have been experimentally tested [KUM90c].

Algorithms for establishing the correspondence between model and image, a prerequisite

for pose refinment, have been developed by Beveridge [BEV91] [BEV90] [FEN90a]. Earlier

work [BEV90] [FEN90a] solving the 2D-to-2D matching problem (where the estimated image
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projection of a landmark is matched directly to data, subject to rotation, translation, and
scale) has been extended to thé full 3D-to-2D matching problem [BEV91]. A comparative
experimental study of these two approaches has been carried out [BEV91]. The results indicate
that the 3D-to-2D matching system is more reliable, but slower, than the 2D-to-2D system, as
expected; however, the 2D-to-2D system is rather robust in its own right in its ability to deal

with perspective distortions.

The reactive planning software for controlling our mobile robot has been developed using
a model of the second floor of our building [FEN91] [FEN90a] [FEN90b]. The locale modelling
system was used to demonstrate the planning system. Software for the selection of environmental
landmarks, to be used while the robot is executing an action, is part of the system. The steering
system orients on detected environmental landmarks, and uses these to correct the robot’s
trajectory and verify its location during actions [FEN9Ob]. The system has been developed on
the Sun 4 workstation, but the robot cannot perform acticn-level servoing in real t;me (for
 instance, moving the robot 20 feet takes about 3 minutes). With parallel architectures or other

special purpose hardware, real-time navigation is achievable.

A new technique for robot navigation has been developed and implemented in our group, and
is currently being explored by Pinette [HON91] [HON90] and Zhang [ZHA90]. This approach
deals with the problem of automatic model acquisition of the three-dimensional environment.
The robot navigates by using an image-based homing algorithm to move between neighboring
target locations. A novel feature of this approach is an imaging system that acquires a compact,

360° representation of the environment.

Weiss [GRU91] [WEI90] [GRUQ0] has studied the problem of incrementally acquiring a

surface representation for use in feedback control of a robot engaged in purposeful interaction
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with its environment. The incremental acquisition of a force-domain model for grasping is also

described.

Sawhney has developed a potentially powerful framework for obstacle detection from mo-
tion [SAW90a]. In this approach, shallow structures in the image are segmented on the basis of
consistent modelling of their image motion over time by affine transformations. Shallow struc-
tures are surfaces whose depth variation relative to their distance is small, and therefore can
be represented by frontal plane surfaces parz;llel to the image plane. These ideas have been

successfully tested using real images [SAW90a).

Work has continued also on static image interpretation and object recognition. Williams has
used techniques of perceptual grouping to examine the difficult problem of distinguishing figure
from ground [WIL90]. Solving this problem is a prerequisite for achieving obstacle avoidance. He
has developed a system that is capable of distinguishing multiple planar figures in real images,
despite the presence of multiple occlusions. Burns has pregenged a study of the variation in the
appearance of 3D line features with respect to their 2D projection [BUR90]. 2D Features which
display little variation ‘are argued to be useful for object recognition. Also, he has proven that

no view—invariant 2D feature exists in the general case of n points.

Draper has considered the problem of automatically learning object recognition strate-

" gies which are object-specific, from object descriptions and sets of interpreted training images
[DRA90]. | A separate recognition strategy is developed for every object in the domain. This

work extends the knowledge-based approach by replacing the ad-hoc control heuristics of other

systems with well-motivated control and classification decisions.

Collins has studied the problem of deriving 3D line and surface orientations from images by

statistical methods. His work has been applied to determining line and plane orientations from
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stereo line pair correspondences [COL90b), and from a vanishing point analysis [COL90a).

A new theoretical understanding of shape from shading has been developed in [OLI91a)
[OLI91c] [OLI91d] [OLI91e] [OLI90b] [OLI8Y]. These results imply that regularization is usually
unnecessary for shape reconstruction, and will distort the recovered shape. Also, new constraints
on the possible surface solutions corresponding to a shaded image were derived. These theoretical

results have been incorporated in a new shape reconstruction algorithm that is simple, fast and

robust—provably convergent (in many cases) to the correct surface.

A new local smoothing filter for curves and surfaces has been developed in [OLI90a], which
combines the advantages of Fourier description and Gaussian smoothing. Unlike Gaussian filters,

it does not exhibit the well-known problem of curve shrinkage.

Dolan has continued to work on the perceptual organization of image curves. In particular,
he has been working on problems of redundant description, collateral grouping, and texture
discrimination. He is designing a parallel implementation to run on the Connection Machine,
and eventually on the Image Understanding Architecture [WEES89a]. He has also studied the

problem of finding minimal length tree networks on the unit sphere [DOL91] [DOL89).

Snyder [SNY90a] [SNY90b] [SNY89] has achieved a general classification of the possible

smoothness constraints for use in optical flow calculations, or surface interpolation, using the

theory of group representations.

More work was done on the motion data set taken with the ALV at Martin Marietta
[DUT89]. Three of the sequences were converted so that complete 3D information was available
for the ground truth and the vehicle motion parameters.

Software is being developed for use on the Image Understanding Architecture (IUA)
7




[WEES89)], developed by the University of Massachusetts in collaboration with Hughes. Dutta
has implemented correlation matclﬁng on an instruction-level simulation of the IUA, which has
been tested on a 64 x 64 image. It was found that for an image displacement of at most 5 pixels
along any of the axes, the program ran in about 26 msec. The Nagin—Kohler segmentation
algorithm [BEV89] and Boldt’s line detection algorithm [BOL89)], both developed in our group,

are also in the process of being implemented.

A compiler of the language Apply has beén implemented on the IUA simulator by Scudder.
More work has been done on the Darpa Image Understanding Benchmark [WEE89b]. The
low level portion was made more modular, and bugs were removed. Scudder is working on a
database for the TUA which will be a successor to the sequential ISR (Intermediate Symbolic
Representation) [BRO89]. Finally, a rex;ised version of the ISR system for intermediate level

vision has been implemented [DRA9Ob].

Much of the work described in this report has also been described in the annual report; an

~ overview of this research appears in [RIS90].

2. Autonomous Robot Navigation

2.1 Landmark-based Navigation

Work on our autonomous navigation project utilized a model of the second floor of our
building. The locale system for modelling the environment [FEN91] [FEN90a] [FEN90b] was
used to demonstrate the planning system. In the locale system, the environment is represented
as a graph which captures the key topological, geometric, and physical properties of the spatial

entities making up the robot’s world. This network describes space in terms of a hierarchical
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collection of locales: spatial entities representing objects, buildings, parking lots, free space, etc.

A locale is a parcel of space which has semantic significance for the navigation problem.

The reactive planning software for controlling our mobile robot avoids the generation of
detailed plans. Plans are “sketched” and modified in response to what is perceived as a result
of each action. To begin with, each task given to the robot is decomposed depth first into a tree
of less abstract subgoals. A sequence of subgoals from this tree is called a plan sketch because
it is only partially developed, and generally will change as execution proceeds. The plan-and-
monitor executive [FEN88] [FEN8Y] refines the plan—sketch hierarchy to fit the actual results of
each action, in a procedure called plan-level perceptual servoing. Action begins as soon as the
first subgoal in the plan sketch is a primitive (that is, capable of being directly executed by the

vehicle).

A perceptual servoing cycle begins by analyzing what is known about the environment
and what should be perceived from the current location of the agent. 3D entities, called land-
marks, are selected from the environmental model on the basis of how distinctive they are, and
what kind of information they offer the servoing procedure. Once these landmarks are selected
their appearance is projected onto the image plane and matched to data in the image. These
matches, along with the knowledge of the 3D locations of the landmarks, are used to compute

the appropriate corrections to the plan sketch hierarchy.

Landrﬁarks are selected on the basis that they will be easy to find using correlation. They
are chosen to be distinctive surface patches defined by vertices separating regions of differing
reflectance. For the current locale, all vertices from the model which are expected to be visible
are collected. From these, the vertices associated with a reflectivity discontinuity above some

threshold are returned as the selected landmarks.
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Experiments demonstrated the use of correlation in matching a modelled landmark with its
image for plan-level perceptual serfroing. After matching, a version of Kumar’s pose refinement
algorithm [KUMO90d] is used to calculate the robot’s position. The experiments showed an

accuracy of 0.15 feet over a depth range of 6 to 40 feet in our hallway sequence.

Perceptual servoing has been used at the action level [FEN91] [FEN90b] to orient the robot
to detected environmental landmarks, which are also used to correct the robot’s trajectory
during the execution of a Move command. Tile system has been demonstrated successfully in
our hallway environment; in these experiments, the robot moved in a straight line for distances
of up to 40 feet with a tolerance of 0.3 inches [FEN91] [FEN9Ob]. On a Sun 4 workstation, the
robot cannot perform action-level servoing in real time (for instance, moving the robot 20 feet

takes about 3 minutes), but plans in the future include the IUA for real-time navigation.

2.2 Navigation via Homing

A new technique for robot ﬁavigation has been developed and implemented in our group,
and is currently being;.explored by Pinette [HON91] [HON90] and Z.hongfei Zhang [ZHA90].
This approach deals with the problem of automatic model acquisition of the three-dimensional
environment. The problem is solved by representing the environment as a set of snapshots of the
world taken at target locations. The robot navigates by using an image-based homing algorithm
to move between neighboring target locations; explicit inference of three-dimensional structure
from image data, though possible, is not required. A novel feature of this approach is an imaging

system that acquires a compact, 360° representation of the environment.

This approach avoids the necessity for constructing a detailed 3D model of the robot’s

environment—a task that is often difficult and time-consuming in its own right. However,
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navigation is limited to a fixed set of target locations known to the robot. These locations are
learned automatically by running the robot along a desired route, and having the system extract
location signatures for a sequence of target locations on the route. After acquiring this model,

the robot can navigate the route by successively homing to each of its target points.

Location signatures are obtained by using a novel and powerful imaging system to project
a full 360° view of the world into a single image, which is then condensed into a compact, one-
dimensional waveform representation, where significant changes in intensity provide landmark
features. For homing to a nearby target location, the differences between the signatures of the
robot’s current and desired locations are used to compute incremental movements that take the
robot closer to the target location. Homing can only be done locally; if the robot’s current
location is too far from the target location, the homing algorithm will fail because there will be
too much distortion in images of the prominent landmarks common to both location signatures.
Thus, large-scale navigation tasks are achieved by dividing them into a sequence of small-scale
tasks that are solved by local homing. This complete system has been demonstrated on a mobile

robot for a typical short-range navigation task.

In [ZHA90], a new method of matching landmarks between location signatures is employed.
A symbolic representaion of the location signature is used first for qualitative matching; hy-
pothesized matches are then verified quantitatively. In addition, a geometric model of the 3D
environment is constructed. The rotation and translation between the current and target lo-
cations can be computed, as well as the distance to visible 3D landmarks. In an experiment
carried out in our indoor hallway environment, the robot was able to home to the target lo-
cation to within three inches and three degrees in orientation. This compares with an initital

displacement of about two feet, and a turn of forty degrees in heading orientation.
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2.3 Landmark-based Recovery of Structure and Motion

Over the last several years, we have developed algorithms for the estimation of camera
location and orientation from a set of recognized landmarks appearing in the image. These
algorithms for pose refinement have been applied as part of our system for autonomous robot
navigation in a modelled environment [FEN91] [FEN90a]. In recent work, Kumar and Hanson
have examined several of the factors affecting the robustness of pose determination for real image

sequences. Also, they have applied their techniques to the problem of model extension.

An algorithm for recovering pose which is robust with respect to outliers was developed in
[KUM90b] and [KUM90d]. The landmarks recognized and tracked in the image sequence are 3D
lines or 3D points. Tracking is done using the line tracking algorithm of Williams [WIL88]. The
algorithm can handle up to but less than 50% outliers, such as incorrect correspondences of the
tracked landmarks. Several algorithms were tested on both indoor and outdoor scenes. It was
found that determining the orientation and position of the camera simultaneously gave greater
noise immunity than a sequential technique in which the orientation is computed first, followed
by translation. An a.léorithm based on robust statistics which mini;nizes the median of the
squared error was shown to be robust compared to the more usual .approach in which the mean
of the squared error is minimized. Several instances were reported in which the median-based
approach was able to correctly determine the pose, despite wrong correspondences, while the
standard fechnique failed. In [KUMO90b], different algorithms based on robust statistics were

compared.

In [KUM90a] [KUM90c], Kumar and Hanson studied the effect on pose refinement (and
other related problems of 3D inference from 2D images) of errors in the image center and focal

length. The analysis and conclusions are algorithm-independent. It has been determined that
12



the image center can be in error by as much as 30 pixels for some standard imaging systems.
Nevertheless, they demonstrated both theoretically and experimentally that for standard imag-
ing systems, with a field of view significantly less than 90°, the recovered 3D location of the
camera is insensitive to the position of the image center. However, the recovered camera orien-
tation does depend linearly on the center offset. For instance, with a 24° field of view, and a
512 x 512 image, a 30 pixel center offset can cause a rotation error of about 1.5°. Experiments
giving results in good agreement with the theoretical analysis were performed on two real image

sequences [SAW90c] (these are described in detail in section 3).

It was demonstrated also [KUM90a] [KUM90c] that an incorrect estimate of the camera
focal length only affects significantly the component of translation parallel to the optical axis

of the camera. Experiments on the two real image sequences above confirmed this theoretical

prediction.

Kumar has also been performing experiments on model extension [KUM90c]. Given a partial
model of a scene and the results from the pose refinement algorithm for a sequence of images,
the relative orientation between various image pairs is first computed. Then the depths of
unmodelled points tracked over the sequence is computed by ‘induced stereo’—Dby triangulation
between image pairs using their previously determined relative orientation. The sensitivity of

this depth—from-induced stereo algorithm to errors in the image center was also investigated.

In exﬁeriments using the first of the two real image sequences mentioned above (the box
sequence), the 3D positions of the unmodelled points were recovered with an average error in
depth of .25%. For the second sequence, the average error in depth was 1.3%. The error for
the second case is larger than for the first in part due to the larger field of view (40° compared

to 22°) which increases the sensitivity to image center offset. Also, for the larger field of view,
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radial lens distortion is expected to play a more important role. Given that there must be some
error in the original 3D positions of landmarks, recovery of new 3D points to this accuracy is a

surprising and dramatic result.

2.4 Model-Based Matching to Establish Correspondence for Pose

Recovery

Finding the correct correspondence between the model (as projected in the image plane)
and the image data is a prerequisite for pose recovery, and therefore crucial to our program
of navigation using known landmarks. Beveridge [BEV91] [BEV90] [FEN90a] has developed
algorithms based on local search which can determine this correspondence with some robustness.

The features matched are straight lines.

Establishing correspondence is a combinatorial optimization problem. In the case of line
matching, a match for each model line is sought from the set of data lines: often, more than
one data line will be matched to a single model line (due to line ﬁagmenta.tion), and not
all model/data lines W111 be matched. The matching problem is therefore difficult. Moreover,
matching implicitly involves a second, subsidiary optimization problem: to‘measure the goodness
of a hypothesized correspondence, the model must be rotated and translated to be in optimal
spatial coincidence with the matching data. After this rotation and translation, the departure

from perfect coincidence measures the goodness of the match.

In earlier work on landmark-based navigation [FEN90a] [BEV90], matching was done sep-
arately from and prior to 3D pose recovery. The 3D landmarks were projected into the 2D
image plane, using an estimate of the robot’s current pose; this 2D projection was then matched

directly to the image data. To compensate for error in the pose estimate, it was assumed that a
14



rotation, translation and scaling in the image plane were sufficient to bring the projected land-
mark into correct positioning. This assumption will be valid if the model is restricted in depth,
and the estimate of the robot’s position is reasonably good. It is invalid when an incorrect pose
estimate reults in severe angular distortion of the projected model. So long as the assumption
is valid matching reduces to a simple 2D problem. Moreover, Beveridge has shown that for this
case the optimal transformations bringing a model into coincidence with data can be computed

easily in closed—form [BEV90] [FEN90a], making possible a quick evaluation of a hypothesized

corespondence.

To solve the combinatorial matching problem, Beveridge has introduced a novel variation
of the local search approach: subset-convergent local search. In local search, locally optimal
solutions are sought by incrementally modifying a hypothesized set of correspondences, begin-
ning from random starting points. If this process is repeated many times, begiﬁning at different
starting points, the probability of determining the correct globally optimal correspondence ap-
proaches certainty. In subset—convergent local search, local search is done separately for different
subsets of the model lines. The idea is that for a truly good match, a neighborhood search ini-
tiated for a subset should converge back to the good match. On the other hand, if the match
is bad, then subsets of the match are probably incompatible, and searching with subsets often

leads to a better match. Experiments show that this strategy works well [BEV90].

Beveridge has addressed the full 3D-to-2D matching problem in [BEV91]. In this case, the
3D model is matched to the image data; aligning the model to matching data can be done using
the pose recovery algorithms of Kumar [KUM90b] [KUM90d]. This is more complicated than
the 2D-to-2D approach previously considered, but it is robust against the perspective distortions
produced by errors in the estimated 3D position of the sensor in world coordinates, which create

difficulties for that approach. Local search ilssagain used. In addition, Kumar’s algorithm



was modified using the Levenberg-Marquardt technique, for increased robustness. These two
methods have been compared expérimentally in [BEV91], using a hallway image sequence in
which perspective effects on the projected model are appreciable, since the hallway model has
large depth. It was found that the 2D-to-2D approach is more reli’able than one might at first
expect; in all cases, it improved the estimate of the robot’s pose. The 3D-to-2D algorithm proved
to be robust, always computing the essentially correct pose. The results also suggest that the
additional cost of doing the full 3D-to-2D matching is not prohibitive. A hybrid algorithm,
which blends 2D-to-2D and 3D-to-2D matching, may give a good compromise between speed

and robustness, and is being investigated.

2.5 - Obstacle Detection

Sawhney has developed a potentially powerful framework for obstacle detection [SAW90a].
In many man-made environments, obstacles in the path of a mobile robot can be characterized
as shallow, i.e. they have relatively small extent in depth compared to the distance from the
camera. In [Saw90a), it is demonstrated that shallow structures can' be segmented using the
property that their image motion is describable via an affine transformation. Structures emerge

as shallow or non-shallow depending on whether they can be tracked consistently over time using

the affine model of image motion. The tracking system, in turn, operates in a cycle of prediction

(assuming affine motion), and generic model matching. This paper offers a new approach to
tracking, rejecting heuristic assumptions on the motion or the similarity of tracked tokens, in
favor of the consistency over time of a generic 3D model, namely, a shallow structure. Depths
of the shallow structures can also be computed by this approach, without the intermediate
step of explicit computation of the 3D motion parameters. Thus, the usually difficult problem

of decomposing translation and rotation pa,raxlr%eters in 3D motion can be avoided, while still
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recovering useful approximations to the depth of 3D surfaces. The system is useful for computing

surface representations under both ego and independent-object motions.

An incremental algorithm is presented which works over a sequence of images captured by
a camera undergoing smooth motion. Lines detected in the image are grouped into agregate
structures which are hypothesized to form shallow structures. An initial location and motion
are estimated for each hypothesized shallow structure, which are then updated in a prediction,
matching and tracking cycle. Predictions are generated using the shallow structure model.
Finally, true shallow structures are extracted from the set of hypothesized aggregate structures
on the basis of consistent motion predictions and consistent depth of the structure. This gives a
representation of the tracked shallow objects as frontal planar surfaces. The system was tested
on an indoor image sequence with both ego-motion and independently moving objects, and

worked well.

3. Motion and Structure Reconstruction

3.1 Robustness of General Motion Algorithms

In [SAW90c] two motion algorithms developed in our group [ADI85] [SAW90Db] have been
evaluated experimentally in comparison with Horn’s standard relative orientétion algorithm
[HORY0], using image sequences obtained through a rotational motion of the camera in indoor
scenes. Adiv’s [ADI85] and Horn’s algorithm are well-known general motion algorithms in
which the scene structure is recovered from two image frames. The third algorithm, [SAW90b),
is specialized to deal with rotational motion, and uses multiple frames. All the algorithms use

point correspondences.
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The first sequence consisted of a rectangular checkered box rotating around its body-axis.
Ground truth was obtained by cafefu]ly measuring the coordinates of points on the box, and
then using a pose estimation algorithm [KUM90d]. It was found that Adiv’s algorithm [ADI8S)

compared well with Horn’s [HOR90}, as did the algorithm of Sawhney [SAW90b].

In the second sequence, the inside of a room was imaged. The camera was rigidly mounted
on a robot arm, and the system rotated about an axis parallel to the optical axis. Thus, the
camera motion consisted of rotation about an axis approximately perpendicular to the image
plane, with simultaneous translation parallel to this plane. For this sequence, the general motion
algorithms produced very unreliable and consistently biased depth estimates, as expected on
theoretical grounds, while the third algorithm achieved good results. Due to the consistent
bias, it is likély that even temporal integration will not improve the depths for the two—frame

estimates.

In [DUTY0], the robustness of two—frame motion a.lgor_ithr.;ls is addressed theoretically. It is
proven in an algorithm-independent way that small absolute errors in image displacements can
cause significant errors’in rotational motion parameters. Rotational errors of this magnitude
can then produce large relative errors in the determination of environmental depth. Even if the
motion parameters are known exactly, small errors in image displacements can still lead to large
errors in depth for environmental points whose distance from the camera is greater than a few

multiples of the total translation in depth of the camera.

Previously, the explanation for the lack of robustness in two—frame structure from motion
algorithms had been sought in the context of specific algorithms, or specialized motion. The
work described in [DUT90] is a first step towards a comprehensive, algorithm-independent study

of the issues associated with the correspondence-based structure from motion problem. This
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analysis was extended to the case of binocular motion (the combined use of stereo and motion)

in [DUT91], under the assumption of known motion.

3.2 New Motion Algorithms

Our development of new motion algorithms has extended previous work in several directions.
Dutta [DUTQ0] has proposed and tested a new general motion, two—frame algorithm. Sawhney
and Oliensis [SAW90b] have implemented an algorithm specialized for rotational motion, already
mentioned above, which has better performance than two-frame algorithms in some situations.
Stereo and motion have been integrated in an algorithm recovering motion and relative depth,
developed by Balasubramanyam [BAL91]. Finally, Thomas and Oliensis [THO91] [OLI91b]
[THO90] have developed a .technique for recursively determining structure from multi-frame

image sequences using a Kalman filter, which compensates for the motion error made by two-

frame algorithms.

Dutta has developed a new algorithm for recovering depth from general motion, which he
uses to refine the results obtained by other algorithms (such as Adiv’s [ADI85]). A new objective
function is proposed, which essentially tries to minimize the difference in the depths computed
by the a:' and y-components of the image displacements. This function has the nice property
that it gives an estimate of the average reliability of the depth inea.sﬁrements. A fast simulated

annealing algorithm is used to minimize this objective function.

In [SAW90b] is presented a new technique for reconstructing the 3D structure and mo-
tion of a scene undergoing relative rotational motion with respect to the camera. Given image
correspondences of point features tracked over many frames, a two-stage technique for recon-

struction is presented. First, a grouping algorithm is developed which exploits spatio—temporal




constraints of the common motion to achieve a reliable description of discrete point correspon-
dences as curved trajectories in the.image plane (general conics in the case of rotational motion).
Image trajectories are grouped on the basis of proximity in the image (presumed to imply prox-
imity in space), and goodness of combined fit for the given motion model. Secondly, the 3D
motion and structure are solved for in closed form from the computed image trajectories. The
closed form solution, valid for perspective projection, is a new result. The algorithm has been

demonstrated on real image sequences with good results, as described above.

It is argued in this paper that both spatial and temporal context should be exploited for
reliable structure recovery. Thus, a single 3D point trajectory often yielded very ambiguous
reconstructions, in contrast with a combined fit to spatially-grouped trajectories. Also, for a
motion sequence with motion parallel to the image plane, structure recovered using the stan-
dard, temporally-limited, two—frame motion algorithms was wrong and biased. This problem
is not likely to be cured by combining many different two—frame estimates, for instance using a
Kalman filter, because of the consistent bias. On the other hand, Sawhney’s algorithm, which
integrates information over time using many frames simultaneously, produced the correct result.
Techniques for recovering structure from rotational motion may be useful for automatic ﬁodel

acquisition in industrial settings by inducing rotational motion of the sensor.

In [BAL91], Balasubramanyam addresses the problem of recovering structure and motion
using a binocular camera system. Combining stereo with motion in this way gives increased
robustness of depth recovery, since the depths are determined redundantly at every time step.
It is demonstrated that a vector encoding 3D information—the p—field—can be derived directly
from purely image measurable quantities, namely, the optic flow and stereo disparity. For
each image point, the pfield is parallel to ~the real instantaneous 3D velocity vector for the

corresponding 3D point, scaled by the depth og 3his point.



Balasubramanyam also examines the behavior of the p-field for specific motions (purely
rotational, purely tr;mslational) , as well as for general motion, and gives experimental results on
real and synthetic binocular image sequences. Finally, possible applications are discussed. For
instance, since the p-field is a scaled replica of the real 3D velocity vector, it seems more appro-
priate to impose smoothness on this vector, rather than on optical flow, in deriving smoothed

motion fields. It may also provide a useful framework for occlusion detection.

In [THO91] [OLI91b] [THO90] a new alg'orithm for recursively determining structure from
multi-frame image sequences using a Kalman filter was implemented. Input for the algorithm
consists of point correspondences tracked over many image frames. This work incorporates the
insight, cited above [DUT90], that small errors in recovering motion using a two—frame algorithm
can cause large errors in structure determinination. Thus, in recursively combining structure
estimates from multiple frame pairs of an image sequence, it is important to maintain a record
of the effects due to motion error, and to compensate for these effects. This was not done in
previous recursive, multi-frame algorithms. The new algorithm of [OLI91b] [THOY1], which
does compensate for thf, effects of motion error, has achieved good results for general motion on

synthetic and real images sequences.

The algorithm is based on the observation that errors in the motion produce cross-
correlations in the structure errors between different 3D points. Conversely, these correlations
are the record of the motion error. Thus, to explicitly incorporate motion error in a recursive

algorithm, a record of the correlations in the structure errors must be maintained and updated.

Horn’s relative orientation algorithm [HOR90] is used to provide two—frame structure esti-
mates. For this algorithm, a somewhat complex error analysis is used to estimate the expected

structure errors, including the cross—correlations. The fusing of the new structure estimate
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with the old is done using a standard Kalman filter, but with the cross—correlations taken
into account. Typically, a complefe computation for fourteen points tracked over fifteen time
steps required thirty minutes on a TI explorer. The results on synthetic images show that the
structure estimates improve over time as expected. For ome of the real image sequences, the
improvement is dramatic after only four frames; this can be explained as due to the algorithm

having corrrectly combined successive measurements to obtain an effectively wider baseline.

3.3 Incremental Visual Modeling for Feedback Control

In [GRU91] and [GRU90], the incremental constrﬁction of geometrical and force-domain
models for closed-loop sensing and control from visual images is described. The force model
consists of a two-dimensional surface in a six-dimensional wrench space. It is computationally
desirable to have multiple resolution force domain models which use solutions at a coarse level to
provide initial conditions for solutions at a higher resolution. Reasoning in the force domain is

facilitated by constructing multiple resolution models. Spatial frequency encoded models based

on Fourier coefficients are explored in these two papers.

Also, it is shown how incomplete surface data derived from a sequence of visual images
can be used to incrementally construct a local geometric model, represented by planar patches.
- Results are presented for a sequence of images derived from a test object (soda can). It is then
shown how;v this model can be mapped to a global wrench space model encoded by the Fourier

coeflicients.

The incremental acquisition of sparse geometric information (position, orientation, and cur-
vature) was also studied in [WEI90]. Occluding contours, surface markings, and creases are

tracked over multiple views. 3D polygonal curves and triangular surface patches are computed
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from known camera motion. The sectional curvature in the viewing direction can also be ap-

proximately computed. Results were presented for a rotating cylinder and Rubik’s cube.

4. Object Recognition: Static Image Understanding

4.1 View Variation of Image Features

Burns has presented a study of the variation in the appearance of line and 2D features
with respect to the view [BUR90]. He argues that if an image feature is to be useful in object
recognition, the feature should vary by a small amount over useful views. His paper examines
feature variation under a restricted but useful class of camera views—those for which the camera

is sufficiently far from the viewed object that weak perspective is an appropriate imaging model.

For such views, the depth variation on the object should be less than about one—tenth of the
distance to the camera. It is shown that some simple features vary little over most of the view
sphere and are thus potentially useful for object recognition—for example, the angle between

two 3D line segments when this angle is small.

Also, he considers features that are strictly invariant under variations of the view. View-—
invariant features are obviously ideal for object recognition. For general point sets, however,
Burns has proven that no invariant feature ezists under perspéctivé projection [BUR90]. This
is a new fesult. It holds also for orthographic and weak perspective projection. There do
exist special-case view invariants of practical importance—image features that are only view—
invariant for special configurations of 3D points. Burns provides a classification of such features
under weak perspective, and derives some new invariants that have not appeared previously in

the recognition literature.
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4.2 Determining Line and Plane Orientations by Statististical

Methods

Collins has studied the problem of deriving 3D line and surface orientations from images
by statistical methods [COL90a] [COL90b]. Since the orientation of a 3D line or planar surface
can be specified by a unit vector, he examined the properties of probability distributions of such

vectors on the unit sphere, and statistical inferencing techniques over such distributions.

His work can be applied to determining line and plane orientations from stereo line pair
correspondences [COL90b], or from a vanishing point analysis [COL90a]. In both cases, the
problem can be posed as follows: given a set of orientation vectors approximately determined
from the image, determine the orientation vector that is most nearly perpendicular to all of
these. For instance, for a stereo line pair correspondence, the projection plane is defined for each
image as the plane spanning the camera focal point and the 2D image line. Since the 3D line
must lie in the projection planes for both images, its orientation vector is determined as being

perpendicular to the normal vectors for these planes.

The statistical problem is to determine accurately the perpendicular unit vector given a
set of approximately coplanar vectors obtained with some uncertainty, and to estimate con-
fidence regions for this unit vector. In Collins’ approach, the} measured vectors are assumed
to be distributed in accordance with a Bingham’s distribution, which is essentially a Gaussian
distribution restricted to the sphere. To determine a best estimate of the perpendicular unit
vector, and confidence regions for this estimate, the parameters of the Bingham distribution
must be estimated from the sample of measured vectors. Experimental results on real images
for the problem of determining planar orientations from a vanishing point analysis are presented

using this technique, and also a non-parametric estimation procedure. The two techniques gives

24



results in good agreement with each other and with ground truth. However, this approach is

complex and computationally expensive.

Collins also shows how to derive an easily computable approximation for the Bingham
confidence regions, by computing the least-square best-fit plane for the sample measurements
on the sphere. Finally, he shows how to solve the stereo problem using a somewhat different

approximating technique. Experimental results on real images achieved accurate recovery of

ground truth for this problem domain also.

4.3 High Level Vision: Learning Object Recognition Strategies

Draper has considered the problem of automatically learning object recognition strate-
gies that are object-specific, from object descriptions and sets of interpreted training images
[DRA90]. A separate recognition strategy is developed for every object in the domain. The
goal of each recognition strategy is to identify any and all instances of the object in an image,
and give the 3D position (relative to the camera) of each instance. The goal of the lez«;rning

process is to build a strategy that minimizes the expected cost (in our case computational cost)

of recognition subject to accuracy constraints imposed by the user.

In this work, object recognition is modeled as a process of applying visual knowledge sources
to hypotheses, where the knowledge sources are standard image understanding strategies, such
as 2D — 3D point matching, vanishing point analysis, and straight line extraction. Hypotheses
are intermediate-level statements about the image and/or 3D world, and can occur at many
levels of abstraction. Examples include straight line segments, 3D orientation vectors, and
volumes. At each step in the recognition process, a knowledge source is applied to one or more

hypotheses. The result is either a new hypothesis or a discrete evidence value reflecting the
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quality of the original hypotheses.

Recognition strategies are represented by recognition graphs, which are similar in many ways
to decision trees. Unlike decision trees, however, recognition graphs direct hypothesis creation
as well as hypothesis classification or verification. Object-specific strategies are learned in a
two step process. The first step involves learning which hypotheses should be generated. The

second learns how to verify them efficiently.

This work extends the knowledge-based approach to image understanding by replacing
the ad-hoc control heuristics of other systems with wgﬂ-motivated control and classification
decisions. The user, instead of supplying heuristics in the form of if-then rules or confidence
functions, specifies accuracy requirements. The system selects knowledge sources that minimize

the expected cost of recognition while achieving the specified accuracy.

4.4 Figural Completion and Figure—Grduﬁd Separation

Williams has used. techniques of perceptual grouping to examine the difficult problem of
distinguishing figure from ground [WIL90]. Solving this problem is a prerequisite for achieving
obstacle avoidance. He has developed a system that is capable of distinguishing multiple planar
figures in real images, despite the presence of multiple occlusions. The system selects the optimal
consistent. interpretation of the different figures, hypothesizing possible figural completions (i.e.,
hidden lines) when there is occlusion, and grouping figure boundaries into complete surface
interpretations. The system is able to solve relatively complex perceptual problems such as the

construction of an illusory triangle for the Kanizsa Triangle.

The system operates in two stages. In the problem posing stage, image evidence is collected
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and incorporated in a graph, called the contour graph. This graph includes #mage lines recovered
using a straight line detection algorithm, virtual lines which are hypothetical joins between
collinear image lines (these may have been missed by the line detector due to occlusion or low
image contrast), endpoints of the image lines, corners between image lines, and finally crossings

where image or virtual lines intersect.

In the second problem solving stage, the features created in the first stage are organized into
the optimal figural completions, using integer linear programming. The lines are grouped into
surface boundaries. Virtual lines are identified as occluded contours, or as visible lines below the
contrast threshold of the line extraction algorithm, or rejected as not corresponding to real scene
boundaries. The signs of occlusion at crossings are determined, as well as the occlusion—ordering

of the reconstructed surfaces.

The linear program incorporates physical constraints specifying the mechanics of occlusion
and figural completion. An example of such a constraint is’the;requirement that every occluding
contour must have one of two signs of occlusion. Also, since the projections of complete surface
boundaries are closed contours, all occluding contours must be contained in cycles in the surface
boundary graph. Imposing such constraints leads to many feasible solutions, each a physically
possible interpretation of the image. Additional preference criteria, such as a preference for
figures which are convex at corners, are added by means of a linear objective fuhction, which is
to be minimized subject to the physical constraints. In experiments carried out for a Colorforms

image domain (a 2D planar world), the minima of the objective function computed by the integer

linear program corresponded to the human-preferred interpretations.
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4.5 Shape from Shading

In several recent papers, Oliensis [OLI91a] [OLI91c] [OLI91d] [OLI91e] [OLI90b) [OLI8Y)
has presented a new theoretical understanding of shape from shading. Although this problem
has traditionally been considered to be ill-posed, Oliensis has shown that the surface solution
corresponding to a shaded image is often strongly constrained. Moreover, for images of general
smooth objects wholly contained in the field of view, and for illumination from (or symmetric
around) the camera direction, he has proven that shape is uniguely determined by shading
[OLI91c] [OLI89]. A fortiori, it is well-posed under these conditions. This is the first uniqueness

result valid for images of general surfaces.

The case of general illumination direction is analyzed in [OLI91d] [OLI91e]. Several con-
straints on the potential surface solutions are derived, and it is argued that for a typical image,
shading determines shape essentially up to a finite ambiguity. _More conjectural arguments sug-
gest that in fact shape is often determined with little ambiguity. However, although shape from
shading is typically well-constrained, this is not always true: the strength of the constraint on
the surface solution dt;pends on the image. For some images, the r;zconstruction is uniquely
determined. On the other hand, an explicit example is discussed v'vhere the surface reconstruc-
tion is uniquely determined over most of the image, but infinitely ambiguous within a small
image region. For this image, shape from shading is a partially well-posed problem. It is argued
that such‘i]l—-posed regions can occur frequently near the image boundary, but typically are
small fractions of the image. A practical consequence is that the image -data near the boundary
should be given less weight in a shape reconstruction algorithm. Ideally, the surface should be
reconstructed from the interior of the image outwards—otherwise, the potential instability of

the boundary surface solution may propagate errors inwards, even if the surface in this region
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is actually well-determined.

[OLI90d] [OLI90e] also contain an analysis of the constraint on shape imposed by the image
of the occluding boundary. This boundary ha.sr traditionally been thought to give a strong
constraint, since the surface orientation is determined along it. However, it is proven in these
papers that this is false, and that the surface reconstruction near the occluding boundary is

actually more ambiguous than it is in the neighborhood of an interior image line.

Oliensis has also studied ‘impossible images—those with no corresponding smooth surface
solution. In [OLI89] [OLI91c], again for illumination from the camera direction and an imaged
object within the field of view, it is shown that a general image can be converted into an
effectively impossible one by a small perturbation of its intensities. Thus for almost all such
images, (i.e., intensity functions I(z,y)), effectively no smooth solution to shape from shading

exists. However, non-smooth solutions will always exist [OLI91a].

The new constraints on the surface solutions for shape from shading derived in the work
above have been incorporated in a shape reconstruction algorithm [OLI91a] that is simple, fast,
and robust—provably convergent (in many cases) to the correct §urface. This algorithm does
not use regularization unlike previous ones. This paper also contains a simple uniqueness proof
for shape; from shading, and gives an explicit representation for the surface corresponding to an

image. Also, a new local algorithm for shape from shading was proposed in [OLI90Db].

4.6 Curve Smoothing without Shrinkage

Oliensis has derived a simple local smoothing filter for image or space curves, which combines

the advantages of Gaussian smoothing and Fourier curve description [OLI90a]. Unlike Gaussian
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filters, it has no shrinkage problem. Repeated application of the filter does not yield a curve
smaller than the original, but simf;ly reproduces the result that would have been obtained by
a single application at the largest scale. Unlike Fourier description, the filter is local in space,
i.e., it has a limited spatial width. Thus, it can conveniently be applied by convolving in space.
Also, the result of smoothing a curve segment does not depend on whether or not it is embedded
in a longer curve. The method yields as a byproduct a compact description of the smoothed

curve. Experimental results are presented for open as well as closed 2D contours.

Oliensis traces curve shrinkage under Gaussian smoothing to the fact that a Gaussian filter
reduces the amplitudes of all spatial frequency components in the signal to which it is applied.
He demonstrates that smoothing without shrinkage can be obtained using a hard cutoff low pass
filter, which is equivalent to the use of Fourier descriptors. However, such a filter essentially has
infinite spatial width. Therefore, a slight modification of this filter is proposed, which is shown
to have limited spatial width. Rather than a hard high frequency cutoff, the modified filter has

a slightly smoothed rolloff in its response to high frequencies.

4.7 A Complete Classification of Smoothness Constraints

Gradient-based approaches to the computation of optical flow often use a minimization
technique incorporating a smoothness constraint on the optical flow field. Smoothness con-
straints ar.e also of interest in surface interpolation, where they are known as “performance
functions.” All known smoothness constraints used to compute optical flow have a subtle prop-
erty, namely that they do not mix derivatives of different components of the optical flow field.
Snyder [SNY90a] [SYN9Ob] presents an analysis of smoothness constraints which do not satisfy
this “decoupled” property, but rather in which derivatives of different components of the flow
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can interact. By using the single, natural assumption that a smoothness constraint should not
change form under transformations to different Cartesian coordinate systems, Snyder determines
a complete list of all possible invariant smoothness constraints of type (p, g), by which it is meant
that they are quadratic in p'® derivatives of the optical flow field, and in ¢** derivatives of the
grey level image intensity function. This is done explicitly for the values 0 < p,q < 2. All of
these smoothness constraints, excepting those linear combinations which are decoupled, are new.
In addition, Snyder finds all invariant “performance measures,” used in surface interpolation,
when the performance measure is quadratic in no higher than fourth derivatives of the objective
function. These results are based on the representation theory of the group of Euclidean motions

in the image plane. They extend earlier work on uncoupled constraints which will appear in

[SNY89).
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